

Detector Design and Performance

John Haggerty *Brookhaven National Laboratory*

DOE Science Review

April 30, 2015

- Jets "Comprehensive and high statistics measurements in jet physics in Au-Au, p/d-Au, and p-p systems at RHIC are an important addition to the mostly triggered jet physics of ATLAS and CMS at the LHC."
- **b-tagged jets** "The proposed sPHENIX program on heavy quark physics, enabled by precise tracking and hermetic calorimetry, will provide important new information, including b-tagged jet physics, where a comparison with the p-A and p-p baseline is particularly important."
- Upsilons "High statistics measurements of bottomonium production as a function of transverse momentum and rapidity for p-p, p-A, and Au-Au collisions are particularly important"

"The panel advised that the proposal is an impressive and comprehensive document that demonstrates the importance of the scientific goals and presents a credible preliminary design for a detector that will achieve them."

Design driver: jets

- Jet measurements drove the need for calorimetry, and requires both electromagnetic and hadronic calorimetry to measure the charged and neutral component of both electromagnetic and hadronic showers
- Jets at RHIC
 - Jet energies between 20 and 70 GeV
 - Uniform acceptance without gaps $|\eta|<1$
 - High rates
 - anti- k_T R=0.2, 0.4
 - Unfolding techniques developed for jet identification in heavy ion collisions by ATLAS and CMS

Design driver: tracking

- Separating the Upsilon states cleanly requires a mass resolution of 100 MeV or less
 - Low mass, precision tracking
 - High magnetic field
- Tagging displaced vertices requires Si tracking layers close to the beam pipe
 - Tracking in high multiplicity Au+Au requires small pixel size

The sPHENIX detector concept

- Uniform acceptance $|\eta| < 1.1$ and $0 < \phi < 2\pi$
- Superconducting solenoid enabling high resolution tracking
- Compact electromagnetic calorimeter allowing fine segmentation at a small radius
- Hadronic calorimeter doubling as flux return
- Solid state photodetectors that work in a magnetic field, have low cost, do not require high voltage, are physically small
- Common readout electronics in the calorimeters
- 15 kHz recorded in A+A allows for large unbiased data sample
- Utilization of infrastructure in an **existing experimental hall** (cranes, rails, beam pipe, power, network...)

BaBar superconducting solenoid

MAGNET

BaBar solenoid

- BaBar magnet secured from SLAC after SuperB canceled, arrived at BNL in February 2015
- Considerable additional equipment also acquired (power supplies, dump resistor, quench protection, cryogenic equipment)
- SMD and CAD preparing it for low power cold test
- Well suited to our needs without compromises
 - 1.5 T central field
 - 2.8 m diameter bore
 - 3.8 m long
 - 1.4X₀ coil+cryostat

Electromagnetic and Hadronic Calorimeters

CALORIMETRY

Calorimetry requirements

- Large enough to cover $|\eta| < 1.1$ and 2π in φ
- Be uniform without gaps in the fiducial region
- Allow fast readout (most PHENIX detectors come back to baseline in 1 beam crossing or 106 ns)
- High segmentation for heavy ion collisions
- Work in the possible presence of a magnetic field
- Provide trigger primitives in p+p
- At $\eta = 1$, the coil and cryostat are 2 radiation lengths, driving EMCAL inside solenoid
- $18X_0$ in the EMCAL to contain EM showers, and at least $5.5\lambda_1$ in the entire calorimeter system to contain 95% of energy up to 70 GeV
- Energy resolution
 - EMCAL < 15%/√E (single particle)
 - HCAL < 100%/VE (single particle)

Calorimeters reference design

- EMCAL Tungsten-scintillating fiber
 - Δη x Δφ ≈ 0.025 x 0.025
 - 96 x 256 readout channels
 - EMCal $\sigma_F/E < 15\%/VE$ (single particle)
- HCAL steel and scintillating tiles with wavelength shifting fiber
 - 2 longitudinal segments.
 - An Inner HCAL inside the solenoid.
 - An Outer HCAL outside the solenoid.
 - $-\Delta \eta \times \Delta \varphi \approx 0.1 \times 0.1$
 - 2 x 24 x 64 readout channels
 - HCAL $\sigma_E/E < 100\%/VE$ (single particle)
- Readout with solid state photodetectors (silicon photomultipliers)

- Outer HCAL ≈3.5λ₁
- Magnet ≈1.4X₀
- Inner HCAL ≈1λ_I
- EMCAL $\approx 18X_0 \approx 1\lambda_1$

Electromagnetic calorimeter

- Tungsten-scintillating fiber SPACAL
- Radiation length of ≈7 mm allows it to be inside the solenoid where only the material of the tracker is in front of it
- Beam tested by UCLA group
- Development of projective geometry which could improve e/π separation needed for the Upsilon measurements
- Readout on inner radius of EMCAL with 4 3x3 mm SiPM's
- On-detector electronics limited to preamps, bias control and temperature monitoring

EIC BEMC at eta=0.9, 0.3, 0, Energy Resolution

Hadronic calorimeter

- Extruded 7 mm
 polystyrene scintillator
 tiles with embedded 1
 mm WLS fiber
- SiPM's on the outer radius (one per tile)
- Five tiles in Φ ganged together into tower
- Outer tiles ≈80 cm long
- The outer hadronic calorimeter returns the flux of the magnet

Prototype tiles (Uniplast)

Outer HCAL

Jets in central Au+Au

- Adapted unfolding procedures developed by ATLAS and CMS to RHIC
- GEANT4 Monte Carlo
- Good efficiency, purity, resolution

Sensors, preamplifiers, and digitizers (a little about DAQ and trigger)

CALORIMETER ELECTRONICS

Electronics Concept

- Based on PHENIX experience
- Maintain as much of the PHENIX DAQ as reasonable
 - Event Builder, DCM-II, GTM, GL1
 - Slow control infrastructure
 - Monitoring and data logging infrastructure
- Similar compact design for EMCAL and HCAL
 - SiPM/tower: EMCAL: 4, HCAL: 5
 - Analog front end on the detector
 - Digitization in the IR, digital data to counting house
- Simple, reliable front end electronics on the detector, minimizing connections
- Commercial components

Calorimeter Electronics Overview

Triggering and calibration

- Level 1 triggering
 - Trigger primitives every crossing
 - Level 1 decision in 40 clock ticks
 (4 μs)
 - Buffer 4 consecutive events
 - 15 kHz accept rate
- Calibration system
 - Pulse injection into front end
 - Light pulser into SiPM's
 - Track gain changes from manufacture through operation

PHENIX Raw Trigger Rates (Runs 414204-414988)

Run 14 Au+Au (about half of maximum projected)

Options for tracking: all silicon or silicon + small TPC

TRACKING

Tracking options compared

Si tracker

- 7 layers strips and pixels
- Achieves design goals of pattern recognition and 100 MeV mass resolution on Upsilon states
- Total thickness ≈0.1X₀

TPC + inner Si layers

- 80 cm outer radius TPC
- Inner Si detector
- TPC electronics following from ALICE upgrade

Upsilon performance in Au+Au

100 MeV mass resolution in reference design

Prototype development and testing, engineering analysis of detector

R&D AND ENGINEERING

Prototypes

- Calorimeter beam test T-1044 at Fermilab Test Beam Facility
 - February 2014
 - April 2016
- Silicon strip prototypes developed for RIKEN
- Prototype calorimeter electronics at BNL and digitizers developed at Nevis

Engineering

- Structural analyses of assembly
- Magnetic field and force calculations
- Design of cryogenic plant
- Assembly plans and structural analysis

FINAL ASSEMBLY DEFORMATION IS WITHIN TOLERANCE

Issues and concerns; summary

CONCLUSION

Issues and concerns

- We want to put our strategy for dealing with SiPM radiation damage to the test
- We need to complete and test our calibration strategy for the calorimeters
- Additional Monte Carlo simulation of the full detector with jets are needed to completely verify the design
 - Including more detailed trigger strategy
- The details of tracking system needs to be elaborated
- We need to focus on the calorimeter beam tests in April and October 2016 and draw conclusions from them expeditiously

Summary

- Although we are still considering ways to improve the design and performance of the calorimeters, the concept is quite mature, has had a first round of prototypes, and plans are proceeding for a second round
- The program of simulation and testing will resolve the open questions in the next year
- The tracking system, with its later start, needs more simulation, engineering, testing, and prototyping, but there are excellent and costeffective options